Gender gap correction: How can the evolution of wage inequality be explained?
DOI:
https://doi.org/10.25071/1874-6322.40410Keywords:
Inequality, gender, equalizing policies, wage distribution, interactions between wage determinantsAbstract
Many European countries claim the struggle against wage inequality between men and women to be one of their priorities. Quantifying the real effects that should have been observed if such wage equalization was achieved remains to be done. A Shapley decomposition of the wage inequality allows to determine the a priori impact of a policy that removes the pay gap between men and women for a given age and education level. It also explains how interactions between personal characteristics lead to the obtained result. This economic policy tool is then illustrated with the wage distribution data of the French Labor Survey.
References
Albrecht, J., and D. Franc 2002 “A Shapley decomposition of carbon emissions without residuals”, Energy Policy 30(9): 727-736. DOI: https://doi.org/10.1016/S0301-4215(01)00131-8
Arnault, S. 2018 “Salaire horaire: l’importance de la catégorie socioprofessionnelle et du diplôme”, Insee Focus 116.
Aubert, P., D. Blanchet, and D. Blau 2007 “Social Contract and Age at Retirement: Some Elements of a Franco-American Comparison”, In J. Véron, S. Pennec, and J. Légaré Ages, Generations and the Social Contract: The Demographic Challenges Facing the Welfare State Dordrecht, Netherlands: Springer, pp. 115-153. DOI: https://doi.org/10.1007/978-1-4020-5973-5_5
Bargain, O., and T. Callan 2010 “Analysing the effects of tax-benefit reforms on income distribution: a decomposition approach”, The Journal of Economic Inequality 8(1): 1-21. DOI: https://doi.org/10.1007/s10888-008-9101-4
Baye, F.M. 2006 “Growth, Redistribution and Poverty Changes in Cameroon: A Shapley Decomposition Analysis”, Journal of African Economies, 15(4): 543-570 DOI: https://doi.org/10.1093/jae/ejk010
Blau, F.D., and L.M. Kahn 2017 “The gender wage gap: Extent, trends, and explanations”, Journal of Economic Literature 55(3): 789-865. DOI: https://doi.org/10.1257/jel.20160995
Chantreuil, F., and I. Lebon 2015 “Gender contribution to income inequality”, Economics Letters 133: 27-30. DOI: https://doi.org/10.1016/j.econlet.2015.05.009
—–, and A. Trannoy 2011 “Inequality decomposition values”, Annals of Economics and Statistics (101/102): 13-36. DOI: https://doi.org/10.2307/41615472
—– 2013 “Inequality decomposition values: the trade-off between marginality and efficiency”, The Journal of Economic Inequality 11(1): 83-98. DOI: https://doi.org/10.1007/s10888-011-9207-y
Chantreuil, F., S. Courtin, K. Fourrey, and I. Lebon 2019 “A note on the decomposability of inequality measures”, Social Choice and Welfare 53(2): 283-298. DOI: https://doi.org/10.1007/s00355-019-01183-9
Charpentier, A., and S. Mussard. “Income inequality games”, The Journal of Economic Inequality 9(4): 529-554. DOI: https://doi.org/10.1007/s10888-011-9184-1
Deutsch, J., M.N. Pi Alperin, and J. Silber 2018 “Using the Shapley Decomposition to Disentangle the Impact of Circumstances and Efforts on Health Inequality”, Social Indicators Research 138(2): 523-543. DOI: https://doi.org/10.1007/s11205-017-1690-5
Devicienti, F., 2010 “Shapley-value decompositions of changes in wage distributions: a note”, The Journal of Economic Inequality, 8(1): 35-45. DOI: https://doi.org/10.1007/s10888-008-9102-3
DiNardo, J., N. Fortin, and T. Lemieux 1996 “Labor market institutions and the distribution of wages, 1973–1992: A semiparametric approach”, Econometrica 64(5): 1001-1044. DOI: https://doi.org/10.2307/2171954
Gini, C. 1921 “Measurement of inequality of incomes”, The Economic Journal 31 (121): 124-126. DOI: https://doi.org/10.2307/2223319
Grabisch, M. 1996 “The representation of importance and interaction of features by fuzzy measures”, Pattern Recognition Letters, 17(6): 567-575. DOI: https://doi.org/10.1016/0167-8655(96)00020-7
—– 1997 “K-order additive discrete fuzzy measures and their representation”, Fuzzy Sets and Systems 92(2): 167-189. DOI: https://doi.org/10.1016/S0165-0114(97)00168-1
—–, J.L. Marichal, and M. Roubens 2000 “Equivalent representations of set functions”, Mathematics Operations Research, 25(2): 157-178. DOI: https://doi.org/10.1287/moor.25.2.157.12225
Han, L., X. Xu, and L. Han 2015 “Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: evidence from urban China”, Journal of Cleaner Production 103(15): 219-230. DOI: https://doi.org/10.1016/j.jclepro.2014.08.078
INSEE 2006 “Enquête emploi en continu (version fpr)”, ADISP-CMH.
—– 2011 “Enquête emploi en continu (version fpr)”, ADISP-CMH
https://www.insee.fr/fr/metadonnees/source/operation/s1086/presentation.
—– 2016 “Enquête emploi en continu (version fpr)”, ADISP-CMH
https://www.insee.fr/fr/metadonnees/source/operation/s1415/presentation.
Israeli, O. 2007 “A Shapley-based decomposition of the R-Square of a linear regression”, The Journal of Economic Inequality 5(2): 199-212. DOI: https://doi.org/10.1007/s10888-006-9036-6
Jaggers, C. 2017 “Gender equality in higher education”, In Higher education & research in France, facts and figures 10th edition - June 2017 49 indicators [online], Ch. 13. Paris: MENESR [Ministère de l’éducation nationale, de l’enseignement supérieur et de la
recherche].
Kojadinovic, I. 2003 “Modeling interaction phenomena using fuzzy measures: on the notions of interaction and independence”, Fuzzy Sets and Systems, 135(3):317-340. DOI: https://doi.org/10.1016/S0165-0114(02)00129-X
—– 2004 “Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals”, European Journal of Operational Research, 155(3): 741-751. DOI: https://doi.org/10.1016/S0377-2217(02)00880-9
—– 2005 “An axiomatic approach to the measurement of the amount of interaction among criteria or players”, Fuzzy Sets and Systems 152(3): 417-435. DOI: https://doi.org/10.1016/j.fss.2004.11.006
Martinelli, D., and C. Prost 2010 “Le domaine d’études est déterminant pour les débuts de carrière”, Insee Première No. 1313: 1-4.
Morin, T., and N. Remila 2013 “Le revenu salarial des femmes reste inférieur à celui des hommes”, Insee Première No. 1436: 1-4.
Moschion, J., and L. Muller 2010 “Interruptions de carrie`re professionnelle et salaires des hommes et des femmes en 2006”, DARES Technical Report 11.
Murofushi, T., and S. Soneda 1993 “Techniques for reading fuzzy measures (III): interaction index” [in Japanese], In Proceedings of the 9th Fuzzy System Symposium on Fuzzy logic and applications Sapporo, Japan pp. 693-696.
Mussard, S., and V. Terraza 2008 “The Shapley decomposition for portfolio risk”, Applied Economics Letters 15(9): 713-715. DOI: https://doi.org/10.1080/13504850600748968
Observatoire des inégalités 2014 “Une répartition déséquilibrée des professions entre les hommes et les femmes” pp 1-6 https://docplayer.fr/72851952-Une-repartition-desequilibree-des-professions-entre-les-hommes-et-les-femmes.html
—– 2017 “Filles et garçons dans l’enseignement supérieur: des parcours différenciés”. https://www.golias-editions.fr/2010/04/06/filles-et-garcons-dans-lenseignement-superieur-des-parcours-differencies/
Owen, G. 1972 “Multilinear extensions of games”, Management Science 18(5): 64-79. DOI: https://doi.org/10.1287/mnsc.18.5.64
Rapoport, B., and C. Thibout 2018 “Why do boys and girls make different educational choices? The influence of expected earnings and test scores”, Economics of Education Review 62: 205-229. DOI: https://doi.org/10.1016/j.econedurev.2017.09.006
del Río, C., C. Gradín, and O. Cantó 2011 “The measurement of gender wage discrimination: the distributional approach revisited”, The Journal of Economic Inequality 9(1): 57-86. DOI: https://doi.org/10.1007/s10888-010-9130-7
Sastre, M., and A. Trannoy 2002 “Shapley inequality decomposition by factor components: Some methodological issues”, Journal of Economics 77(1):51-89. DOI: https://doi.org/10.1007/BF03052500
Shapley, L.S. 1953 “A value for n-person games”, In H.W. Kuhn and A.W. Tucker Contributions to the Theory of Games (AM-28) Annals of Mathematics Studies Series Princeton, NJ: Princeton University Press 2: 307-317. DOI: https://doi.org/10.1515/9781400881970-018